Illllllll gera JZ 11111 illlll ] 11111 Hllll Determining Feature Weight of Pattern Classification by Using Rough Genetic Algorithm and Fuzzy Similarity Measure
نویسنده
چکیده
The nearest neighbor (NN) methods solve classification problem by storing examples as points in a feature space, which requires some means of measuring distances between examples. However, it suffers from the existence of noisy attributes. One resolution is to modify the distance of similarity degree using attribute weights, which can not on]y decrease the influence of noisy attributes, but also subset relevant attributes. In this paper, a rough genetic algorithm (RGA) proposed by Lingras and Davies is applied to the classification problem under an undetermined environment, based on a fuzzy distance function by calculating attribute weights, The RGA can complement the existing tools developed in rough computing. Computational experiments are conducted on benchmark problems, downloaded from UCI machine learning databases. Experimental results, compared with a usual GA[1] and the C4.5 algorithms, verify the efficiency of the developed algorithm. Furthermore, the weights learned by the proposed learning method is applicable to not only fuzzy similarity functions but also any similarity functions. As an application, a new distance metric, weighted discretized value difference metric
منابع مشابه
Classification of Iranian Traditional Music Dastgahs Using Features Based on Pitch Frequency
The Iranian traditional music is composed of seven majors Dastgahs: Chahargah, Homayoun, Mahour, Segah, Shour, Nava, and Rast-Panjgah. In this paper, a new algorithm for the classification of the Iranian traditional music Dastgahs based on pitch frequency is proposed. In this algorithm, the features of Lagrange coefficients of pitch logarithm (LCPL), Fuzzy similarity sets type 2 (FSST2), and th...
متن کاملDetermining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm
Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملHESITANT FUZZY INFORMATION MEASURES DERIVED FROM T-NORMS AND S-NORMS
In this contribution, we first introduce the concept of metrical T-norm-based similarity measure for hesitant fuzzy sets (HFSs) {by using the concept of T-norm-based distance measure}. Then,the relationship of the proposed {metrical T-norm-based} similarity {measures} with the {other kind of information measure, called the metrical T-norm-based} entropy measure {is} discussed. The main feature ...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کامل